If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+90w-340=0
a = 1; b = 90; c = -340;
Δ = b2-4ac
Δ = 902-4·1·(-340)
Δ = 9460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9460}=\sqrt{4*2365}=\sqrt{4}*\sqrt{2365}=2\sqrt{2365}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-2\sqrt{2365}}{2*1}=\frac{-90-2\sqrt{2365}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+2\sqrt{2365}}{2*1}=\frac{-90+2\sqrt{2365}}{2} $
| 5/16=11/s | | 4x+A=5x | | 6^x-3=216 | | 13.70=2.90+2.70(m-1) | | 126m+216=40+102 | | (4/x)+(10/x)=11 | | 18=5x-2x+3 | | n^+6n+9=0 | | x-(3x)-9=-5 | | 3x*6=(0.5)(4x*7)+10 | | 5-(2y-3y)=-20 | | g+5=263 | | a-18*3=12*15 | | -6=-1+b/2 | | x2−8x+1=0 | | 1/2y+8=1/5y | | 1/16x^2-x+4=0 | | 8w^2+6w+1=0 | | 30(8.75)+t=400 | | 2h/3-156=42313/24 | | 3x*6=4x*7+10 | | 6=1/5x+2 | | 3d/6=5 | | x/9=1.5/2 | | w+4=2w-5 | | 8x-66=44+13x | | (2a-6)(a+3)=260 | | -(-(-x))x=-1 | | 5(x-8)-11=16x-128 | | -8+y=1 | | 10x^2-19x-20=0 | | 5(7x+2)+6(4-x)=3(9x+2)-4(4x+5) |